Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Infect Dis ; 2022 Dec 05.
Article in English | MEDLINE | ID: covidwho-2296790

ABSTRACT

BACKGROUND: Control of SARS-CoV-2 (SCV-2) transmission requires understanding SCV-2 replication dynamics. METHODS: We developed a multiplexed droplet digital PCR (ddPCR) assay to quantify SCV-2 subgenomic RNAs (sgRNAs), which are only produced during active viral replication, and discriminate them from genomic RNAs (gRNAs). We applied the assay to specimens from 144 people with single nasopharyngeal samples and 27 people with >1 sample. Results were compared to qPCR and viral culture. RESULTS: sgRNAs were quantifiable across a range of qPCR cycle threshold (Ct) values and correlated with Ct values. The ratio of sgRNA:gRNA was stable across a wide range of Ct values, whereas adjusted amounts of N sgRNA to a human housekeeping gene declined with higher Ct values. Adjusted sgRNA and gRNA amounts were quantifiable in culture-negative samples, although levels were significantly lower than in culture-positive samples. Daily testing of 6 persons revealed that sgRNA is concordant with culture results during the first week of infection but may be discordant with culture later in infection. Further, sgRNA:gRNA is constant during infection despite changes in viral culture. CONCLUSIONS: Ct values from qPCR correlate with active viral replication. More work is needed to understand why some cultures are negative despite presence of sgRNA.

2.
Clin Infect Dis ; 2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-2272936

ABSTRACT

BACKGROUND: The variant of concern, Omicron, has become the sole circulating SARS-CoV-2 variant for the past several months. Omicron subvariants BA.1, BA.2, BA.3, BA.4, and BA.5 evolved over the time, with BA.1 causing the largest wave of infections globally in December 2021- January 2022. In this study, we compare the clinical outcomes in patients infected with different Omicron subvariants and compare the relative viral loads, and recovery of infectious virus from upper respiratory specimens. METHODS: SARS-CoV-2 positive remnant clinical specimens, diagnosed at the Johns Hopkins Microbiology Laboratory between December 2021 and July 2022, were used for whole genome sequencing. The clinical outcomes of infections with Omicron subvariants were compared to infections with BA.1. Cycle threshold values (Ct) and the recovery of infectious virus on VeroTMPRSS2 cell line from clinical specimens were compared. RESULTS: The BA.1 was associated with the largest increase in SARS-CoV-2 positivity rate and COVID-19 related hospitalizations at the Johns Hopkins system. After a peak in January, cases fell in the spring, but the emergence of BA.2.12.1 followed by BA.5 in May 2022 led to an increase in case positivity and admissions. BA.1 infections had a lower mean Ct when compared to other Omicron subvariants. BA.5 samples had a greater likelihood of having infectious virus at Ct values less than 20. CONCLUSIONS: Omicron subvariants continue to be associated with a relatively high rate of PCR positivity and hospital admissions. The BA.5 infections are more while BA.2 infections are less likely to have infectious virus, suggesting potential differences in infectibility during the Omicron waves.

3.
JCI Insight ; 7(20)2022 10 24.
Article in English | MEDLINE | ID: covidwho-2020639

ABSTRACT

BACKGROUNDIncreased SARS-CoV-2 reinfection rates have been reported recently, with some locations basing reinfection on a second positive PCR test at least 90 days after initial infection. In this study, we used Johns Hopkins SARS-CoV-2 genomic surveillance data to evaluate the frequency of sequencing-validated, confirmed, and inferred reinfections between March 2020 and July 2022.METHODSPatients who had 2 or more positive SARS-CoV-2 tests in our system, with samples sequenced as a part of our surveillance efforts, were identified as the cohort for our study. SARS-CoV-2 genomes of patients' initial and later samples were compared.RESULTSA total of 755 patients (920 samples) had a positive test at least 90 days after the initial test, with a median time between tests of 377 days. Sequencing was attempted on 231 samples and was successful in 127. Rates of successful sequencing spiked during the Omicron surge; there was a higher median number of days from initial infection in these cases compared with those with failed sequences. A total of 122 (98%) patients showed evidence of reinfection; 45 of these patients had sequence-validated reinfection and 77 had inferred reinfections (later sequencing showed a clade that was not circulating when the patient was initially infected). Of the 45 patients with sequence-validated reinfections, 43 (96%) had reinfections that were caused by the Omicron variant, 41 (91%) were symptomatic, 32 (71%) were vaccinated prior to the second infection, 6 (13%) were immunosuppressed, and only 2 (4%) were hospitalized.CONCLUSIONSequence-validated reinfections increased with the Omicron surge but were generally associated with mild infections.FUNDINGFunding was provided by the Johns Hopkins Center of Excellence in Influenza Research and Surveillance (HHSN272201400007C), CDC (75D30121C11061), Johns Hopkins University President's Fund Research Response, Johns Hopkins Department of Pathology, and the Maryland Department of Health.


Subject(s)
COVID-19 , Reinfection , Humans , SARS-CoV-2/genetics , Genome, Viral
4.
Open Forum Infect Dis ; 9(7): ofac192, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1922309

ABSTRACT

Background: The global effort to vaccinate people against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during an ongoing pandemic has raised questions about how vaccine breakthrough infections compare with infections in immunologically naive individuals and the potential for vaccinated individuals to transmit the virus. Methods: We examined viral dynamics and infectious virus shedding through daily longitudinal sampling in 23 adults infected with SARS-CoV-2 at varying stages of vaccination, including 6 fully vaccinated individuals. Results: The durations of both infectious virus shedding and symptoms were significantly reduced in vaccinated individuals compared with unvaccinated individuals. We also observed that breakthrough infections are associated with strong tissue compartmentalization and are only detectable in saliva in some cases. Conclusions: Vaccination shortens the duration of time of high transmission potential, minimizes symptom duration, and may restrict tissue dissemination.

5.
J Clin Microbiol ; 60(7): e0018722, 2022 07 20.
Article in English | MEDLINE | ID: covidwho-1901919

ABSTRACT

COVID-19 has brought unprecedented attention to the crucial role of diagnostics in pandemic control. We compared severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) test performance by sample type and modality in close contacts of SARS-CoV-2 cases. Close contacts of SARS-CoV-2-positive individuals were enrolled after informed consent. Clinician-collected nasopharyngeal (NP) swabs in viral transport media (VTM) were tested with a routine clinical reference nucleic acid test (NAT) and PerkinElmer real-time reverse transcription-PCR (RT-PCR) assay; positive samples were tested for infectivity using a VeroE6TMPRSS2 cell culture model. Self-collected passive drool was also tested using the PerkinElmer RT-PCR assay. For the first 4 months of study, midturbinate swabs were tested using the BD Veritor rapid antigen test. Between 17 November 2020 and 1 October 2021, 235 close contacts of SARS-CoV-2 cases were recruited, including 95 with symptoms (82% symptomatic for ≤5 days) and 140 asymptomatic individuals. Reference NATs were positive for 53 (22.6%) participants; 24/50 (48%) were culture positive. PerkinElmer testing of NP and saliva samples identified an additional 28 (11.9%) SARS-CoV-2 cases who tested negative by reference NAT. Antigen tests performed for 99 close contacts showed 83% positive percent agreement (PPA) with reference NAT among early symptomatic persons, but 18% PPA in others; antigen tests in 8 of 11 (72.7%) culture-positive participants were positive. Contacts of SARS-CoV-2 cases may be falsely negative early after contact, but more sensitive platforms may identify these cases. Repeat or serial SARS-CoV-2 testing with both antigen and molecular assays may be warranted for individuals with high pretest probability for infection.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Pandemics , Sensitivity and Specificity
6.
Microbiol Spectr ; 10(3): e0102522, 2022 06 29.
Article in English | MEDLINE | ID: covidwho-1865143

ABSTRACT

Ensuring SARS-CoV-2 diagnostics that can reliably detect emerging variants has been an ongoing challenge. Due to the rapid spread of the Omicron variant, point-of-care (POC) antigen tests have become more widely used. This study aimed at (i) comparing the analytical sensitivity (LOD) of 4 POC antigen assays, BD Veritor, Abbott BinaxNow, Orasure InteliSwab and Quidel QuickVue, for the Omicron versus the Delta variant and (ii) verifying the reproducible detection of Omicron by the 4 antigen assays. The LOD for all four assays were evaluated using Omicron and Delta virus stocks quantified for infectivity and genome copies. The four assays detected all replicates of Omicron and Delta dilutions at 104 and 105 TCID50/mL, respectively. We quantified both viral stocks using droplet digital PCR (ddPCR), which revealed that the Omicron stock had equivalent copies of the N gene to Delta at a one log lower infectious virus. The Abbott BinaxNow and Orasure InteliSwab had the highest analytical sensitivity for Omicron while the Orasure InteliSwab and the Quidel QuickVue had the highest analytical sensitivity for Delta. When 14 SARS-CoV-2 real-time PCR positive nasal/nasopharyngeal swab samples (12 Omicron and 2 Delta, mean Ct = 19.1), were tested by the four assays, only the QuickVue detected all samples. Antigen test positivity correlated with recovery of infectious virus on cell culture in 9 out of 13 tested specimens from symptomatic, asymptomatic, unvaccinated, and vaccinated individuals. Although our study confirms the reduced analytical sensitivity of antigen testing compared to molecular methods, the Omicron variant was detectable by the four evaluated rapid antigen tests. IMPORTANCE In the manuscript, we report an evaluation of the capability of 4 point of care (POC) antigen assays, the BD Veritor, Abbott BinaxNow, Orasure InteliSwab and Quidel QuickVue to detect the Omicron variant of SARS-CoV-2, and we compared their analytical sensitivity for Omicron versus Delta. In this analysis we found that all four assays detected Omicron and Delta at 104 and 105 TCID50/mL, respectively. We further quantified the viral stocks used by droplet digital (ddPCR) and found that the Omicron stock had equivalent copies of the N gene to Delta at a one log lower infectious virus titer and that an increased RNA to infectious virus ratio may be contributing to discrepancies in limit of detection in Omicron compared to Delta. We evaluated 14 SARS-CoV-2 real-time PCR positive nasal/nasopharyngeal swab samples (12 Omicron and 2 Delta), with an average cycle threshold value of 19.1, and only the QuickVue showed 100% agreement.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Point-of-Care Systems , SARS-CoV-2/genetics , Sensitivity and Specificity
7.
Nat Microbiol ; 7(5): 640-652, 2022 05.
Article in English | MEDLINE | ID: covidwho-1815547

ABSTRACT

The dynamics of SARS-CoV-2 replication and shedding in humans remain poorly understood. We captured the dynamics of infectious virus and viral RNA shedding during acute infection through daily longitudinal sampling of 60 individuals for up to 14 days. By fitting mechanistic models, we directly estimated viral expansion and clearance rates and overall infectiousness for each individual. Significant person-to-person variation in infectious virus shedding suggests that individual-level heterogeneity in viral dynamics contributes to 'superspreading'. Viral genome loads often peaked days earlier in saliva than in nasal swabs, indicating strong tissue compartmentalization and suggesting that saliva may serve as a superior sampling site for early detection of infection. Viral loads and clearance kinetics of Alpha (B.1.1.7) and previously circulating non-variant-of-concern viruses were mostly indistinguishable, indicating that the enhanced transmissibility of this variant cannot be explained simply by higher viral loads or delayed clearance. These results provide a high-resolution portrait of SARS-CoV-2 infection dynamics and implicate individual-level heterogeneity in infectiousness in superspreading.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Viral Load , Virus Shedding
8.
EBioMedicine ; 79: 104008, 2022 May.
Article in English | MEDLINE | ID: covidwho-1796982

ABSTRACT

BACKGROUND: The increase in SARS-CoV-2 infections in December 2021 was driven primarily by the Omicron variant, which largely displaced the Delta over a three-week span. Outcomes from infection with Omicron remain uncertain. We evaluated whether clinical outcomes and viral loads differed between Delta and Omicron infections during the period when both variants were co-circulating. METHODS: In this retrospective observational cohort study, remnant clinical specimens, positive for SARS-CoV-2 after standard of care testing at the Johns Hopkins Microbiology Laboratory, between the last week of November and the end of December 2021, were used for whole viral genome sequencing. Cycle threshold values (Ct) for viral RNA, the presence of infectious virus, and levels of respiratory IgG were measured, and clinical outcomes were obtained. Differences in each measure were compared between variants stratified by vaccination status. FINDINGS: The Omicron variant displaced Delta during the study period and constituted 95% of the circulating lineages by the end of December 2021. Patients with Omicron infections (N = 1,119) were more likely to be vaccinated compared to patients with Delta (N = 908), but were less likely to be admitted (0.33 CI 0.21-0.52), require ICU level care (0.38 CI 0.17-0.87), or succumb to infection (0.26 CI 0.06-1.02) regardless of vaccination status. There was no statistically significant difference in Ct values based on the lineage regardless of the vaccination status. Recovery of infectious virus in cell culture was reduced in boosted patients compared to fully vaccinated without a booster and unvaccinated when infected with the Delta lineage. However, in patients with Omicron infections, recovery of infectious virus was not affected by vaccination. INTERPRETATION: Compared to Delta, Omicron was more likely to cause breakthrough infections of vaccinated individuals, yet admissions were less frequent. Admitted patients might develop severe disease comparable to Delta. Efforts for reducing Omicron transmission are required as, though the admission risk might be lower, the increased numbers of infections cause large numbers of hospitalizations. FUNDING: NIH/NIAID Center of Excellence in Influenza Research and Surveillance contract HHS N2772201400007C, Johns Hopkins University, Maryland department of health, Centers for Disease Control and Prevention contract 75D30121C11061, and The Modeling Infectious Diseases in Healthcare Network (MInD) under awards U01CK000589.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Hospitalization , Hospitals , Humans , Retrospective Studies , SARS-CoV-2/genetics , Viral Load
9.
J Clin Virol ; 150-151: 105151, 2022 06.
Article in English | MEDLINE | ID: covidwho-1773460

ABSTRACT

INTRODUCTION: COVID-19 large scale immunization in the US has been associated with breakthrough positive molecular testing. In this study, we investigated whether a positive test is associated with a high anti-viral IgG, specific viral variant, recovery of infectious virus, or symptomatic infection during an early phase after vaccination rollout. METHODS: We identified 133 SARS-CoV-2 positive patients who had received two doses of either Pfizer-BioNTech (BNT162b2) or Moderna (mRNA-1273) vaccines, the 2nd of which was received between January and April of 2021. The positive samples were collected between January and May of 2021. Samples were sequenced to characterize the whole genome and Spike protein changes and cycle thresholds that reflect viral loads were determined using a single molecular assay. Respiratory SARS-CoV-2 IgG antibodies were examined using ELISA and specimens were grown on cell culture to assess the recovery of infectious virus as compared to a control unvaccinated cohort. RESULTS: Of 133 specimens, 24 failed sequencing and yielded a negative or very low viral load on the repeat PCR. Of 109 specimens that were used for further genome analysis, 68 (62.4%) were from symptomatic infections, 11 (10.1%) were admitted for COVID-19, and 2 (1.8%) required ICU admission with no associated mortality. The predominant virus variant was the Alpha (B.1.1.7), however a significant association between lineage B.1.526 and amino acid change S: E484K with positives after vaccination was noted. A significant reduction of the recovery of infectious virus on cell culture was accompanied by an increase in localized IgG levels in respiratory samples of vaccinated individuals. CONCLUSIONS: Vaccination reduces the recovery of infectious virus in breakthrough infections caused primarily by the Alpha variant accompanied by an increase in upper respiratory tract IgG levels.


Subject(s)
COVID-19 , Antibodies, Viral , Antiviral Agents , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin G , RNA, Messenger , Respiratory System , SARS-CoV-2 , Vaccination
10.
Clin Infect Dis ; 74(8): 1419-1428, 2022 04 28.
Article in English | MEDLINE | ID: covidwho-1703304

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants concerning for enhanced transmission, evasion of immune responses, or associated with severe disease have motivated the global increase in genomic surveillance. In the current study, large-scale whole-genome sequencing was performed between November 2020 and the end of March 2021 to provide a phylodynamic analysis of circulating variants over time. In addition, we compared the viral genomic features of March 2020 and March 2021. METHODS: A total of 1600 complete SARS-CoV-2 genomes were analyzed. Genomic analysis was associated with laboratory diagnostic volumes and positivity rates, in addition to an analysis of the association of selected variants of concern/variants of interest with disease severity and outcomes. Our real-time surveillance features a cohort of specimens from patients who tested positive for SARS-CoV-2 after completion of vaccination. RESULTS: Our data showed genomic diversity over time that was not limited to the spike sequence. A significant increase in the B.1.1.7 lineage (alpha variant) in March 2021 as well as a transient circulation of regional variants that carried both the concerning S: E484K and S: P681H substitutions were noted. Lineage B.1.243 was significantly associated with intensive care unit admission and mortality. Genomes recovered from fully vaccinated individuals represented the predominant lineages circulating at specimen collection time, and people with those infections recovered with no hospitalizations. CONCLUSIONS: Our results emphasize the importance of genomic surveillance coupled with laboratory, clinical, and metadata analysis for a better understanding of the dynamics of viral spread and evolution.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Genome, Viral , Genomics/methods , Humans , SARS-CoV-2/genetics
11.
J Infect Dis ; 224(6): 976-982, 2021 09 17.
Article in English | MEDLINE | ID: covidwho-1288035

ABSTRACT

BACKGROUND: Serial screening is critical for restricting spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by facilitating timely identification of infected individuals to interrupt transmission. Variation in sensitivity of different diagnostic tests at different stages of infection has not been well documented. METHODS: In a longitudinal study of 43 adults newly infected with SARS-CoV-2, all provided daily saliva and nasal swabs for quantitative reverse transcription polymerase chain reaction (RT-qPCR), Quidel SARS Sofia antigen fluorescent immunoassay (FIA), and live virus culture. RESULTS: Both RT-qPCR and Quidel SARS Sofia antigen FIA peaked in sensitivity during the period in which live virus was detected in nasal swabs, but sensitivity of RT-qPCR tests rose more rapidly prior to this period. We also found that serial testing multiple times per week increases the sensitivity of antigen tests. CONCLUSIONS: RT-qPCR tests are more effective than antigen tests at identifying infected individuals prior to or early during the infectious period and thus for minimizing forward transmission (given timely results reporting). All tests showed >98% sensitivity for identifying infected individuals if used at least every 3 days. Daily screening using antigen tests can achieve approximately 90% sensitivity for identifying infected individuals while they are viral culture positive.


Subject(s)
COVID-19 Testing , COVID-19/diagnosis , Diagnostic Tests, Routine , SARS-CoV-2/isolation & purification , Adult , Aged , Animals , Antigens, Viral/analysis , Chlorocebus aethiops , Female , Humans , Longitudinal Studies , Male , Mass Screening , Middle Aged , Real-Time Polymerase Chain Reaction , Saliva , Sensitivity and Specificity , Vero Cells , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL